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Early time behavior of the order parameter coupled
to a conserved density: A study in a semi-infinite geometry
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Abstract. We study the short time behavior of the order parameter coupled to a conserved field in semi-
infinite geometry. The short time exponent, obtained by solving the one loop differential equations for the
conserved density and the order parameter, agrees with the prediction from a scaling argument based on
short distance expansion. The scaling analysis further shows that this exponent satisfies a scaling relation
similar to that known in the case of a nonconserved order parameter without any coupling.

PACS. 64.60.Ht Dynamic critical phenomena – 75.30.Pd Surface magnetism

1 Introduction

Questions related to relaxations in critical dynamics, es-
pecially critical slowing down, and the nature of trans-
port coefficients have drawn attention due to the unusual
properties of a system as its critical point is approached.
So far the long time relaxation has been the object of
primary focus until recent past when the short time re-
laxation was found to reveal new universal behavior. This
process sets in after the microscopic relaxation processes
which are to be described by the microscopic theory. Such
a short time property was first observed in numerical simu-
lations [1] and was explicitly calculated for a purely relax-
ational model with an n component nonconserved order
parameter field φ(x, t) (model A) [2,3]. The short time re-
laxation involves a new critical exponent which does not
follow from any scaling relation of the known exponents.
Being motivated by the study of boundary critical phe-
nomena [4], the original study of the universal short time
behavior was based on the consideration of a boundary in
the “time” like coordinate. In the Renormalization Group
framework there are additional singularities located on the
time surface. In general, for the order parameter one may
write the scaling form [2]

m = 〈φ(x, t)〉 ∼ t−β/νζf(m0t
x0/ζ), (1)

where m0 is the initial “magnetization” with the scaling
dimension x0 and ζ is the dynamic exponent1. β and ν
are the usual bulk critical exponents associated with mag-
netization and length scale respectively [4]. The function
f(a) ∼ a for a → 0 and thus for short time m ∼ m0t

θ
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1 To avoid any confusion with the coordinate z, we have de-

noted the dynamical exponent by ζ instead of z.

with θ = x0/ζ − β/νζ. For a → ∞, f(a) ∼ constant and
the usual long time relaxation is recovered. For 2 < d < 4,
since x0 > β/ν, initially the magnetization increases upto

a certain time t0 ∼ m
−ζ/x0

0 . In a similar fashion the auto-
correlation function C(t) = 〈φ(x, t)φ(x, 0)〉 has the short
time behavior C(t) ∼ tθ−d/ζ [2].

It is well-understood now that semi-infinite systems,
which extend over infinite space in d − 1 dimensions de-
noted by r and over only the positive half space in the
z direction (z ≥ 0), have critical behavior close to the
surface drastically different from the bulk [4]. Detail field
theoretical studies show that these differences arise from
the need for an additional renormalization factor for field
to cure the new UV singularities caused by the surface. De-
pending on the value of the surface interaction constant,
conventionally denoted by c, there are different univer-
sality classes associated with the surface ordering. These
are named as ordinary (c > 0), special (c = 0) and ex-
traordinary (c < 0) transitions. In the ordinary transition
the surface orders along with the bulk and in the extraor-
dinary transition the surface orders before the bulk. At
the special point c = 0, there is a different set of expo-
nents. The universal short time behavior is also modified
depending on the surface universality class considered. As
has been shown for model A [5,6], in the case of the special
transition the order at short time grows with time whereas
in the ordinary transition it decays with time. By using
the short distance expansion (SDE), introduced by Diehl
in the problem of boundary critical phenomena, the short
time exponent in semi-infinite model A can be shown [5]
to satisfy a scaling relation involving the bulk short time
exponent and the static exponents.

In this paper we are primarily concerned with the uni-
versal short time behavior of a relaxational model with
a conservation law. This is model C (as classified by



424 The European Physical Journal B

Halperin et al. [7]), where the n component order param-
eter is coupled to a nonordering conserved field. We shall
concentrate on the semi-infinite geometry. In reality such
models describe binary alloys undergoing order-disorder
transition where the concentration field (not the order pa-
rameter) plays the role of the conserved density [8] or sys-
tems with mobile conserved impurities or uniaxial Ising
antiferromagnets etc. In the static limit, since the con-
served field can be integrated out, model C becomes iden-
tical to the static limit of model A with shifted coupling
constants.The static bulk and surface exponents therefore
can be simply borrowed from static limit of model A. In
the dynamics of model C, the coupling of the order param-
eter with the conserved field plays an important role and
depending on the stable fixed points of the parameters, the
(n, d) plane can be separated into different regions where
e.g. the relaxation rate, dynamical exponents are different
[9]. The short time behavior for the bulk model C has been
studied by Oerding and Janssen [10] who, using the field
theoretic renormalization group technique, obtain a new
universal short time exponent (denoted as θc in the fol-
lowing) for the order parameter relaxation. The dynamics
of the semi-infinite model C [11] has been found to be the
same as the bulk dynamics with static exponents same as
model A at different universality classes of surface transi-
tions.

The short time dynamics and its universal features are
important in quenching experiments where the system is
taken from an unstable ordered state at high temperature
to, say, the critical temperature. In numerical simulations
[12], the short time dynamics is relatively easier to observe
because in this time regime the critical slowing down does
not set in. In several cases the results from early time dy-
namics gave good estimates for not only the short time but
also the bulk exponents. Therefore the knowledge about
the short time exponent for model C and its relation to
other critical exponents is expected to be useful for numer-
ical and experimental work on antiferromagnetic systems
[13], binary alloys [14], and other systems where there are
coupling between the order parameter and a conserved
density field.

A priori it is not clear what role a conserved density
would play in the short time dynamics of the semi-infinite
model C. Another related question is whether the short
time dynamics can be explained by SDE in a similar man-
ner as model A. By solving one loop equations of motion
for the conserved density and the order parameter, we
show that there are certain subtleties in this situation.
Close to the surface the conserved density has spatial vari-
ation not coming from SDE. However, this contributes
to the order parameter equation significantly and finally
leads to the order parameter relaxation consistent with
SDE. Another interesting goal of studying model C is to
observe the shape of the conserved density profile. This
question is partially answered in our analysis in a region
very close to the surface.

The dynamics of the order parameter field and the
conserved nonordering field follows from the Hamiltonian

H[φ,E] =

∫
ddx
{ (∇φ)2

2
+
τ

2
φ2

+
g

4!
φ4 +

E2

2
+
γ

2
Eφ2

}
(2)

and the Langevin equations

∂tφ(x, t) = −λ
δH

δφ(x, t)
+ ζ(x, t) (3)

∂tE(x, t) = λρ∇2
( δH

δE(x, t)

)
+ η(x, t). (4)

The Gaussian random noise η(x, t) and ζ(x, t) have zero
mean and correlations

〈ζ(x, t)ζ(x′, t′)〉 = 2λ δ(x− x′)δ(t− t′) (5)

〈η(x, t)η(x′, t′)〉 = −2λ ρ ∇2δ(x− x′)δ(t− t′). (6)

The generating functional in terms of the response fields
φ̃(x, t) and Ẽ(x, t) is [15,16]

J [φ, φ̃,m, m̃] =

∫
dt

∫
ddx[φ̃{∂tφ(x, t) + λ(τ −∇2)φ

+
λg

3!
φ3+λγφ(x, t)E(x, t)}−λφ̃2(x, t)+Ẽ(x, t)∂tE(x, t)

− λρ(∇2Ẽ(x, t))(
γ

2
φ(x, t)2 +E(x, t)) − λρ(∇Ẽ)2]. (7)

The correlation propagator in the bulk case contains an
equilibrium part which is translationally invariant in time
and a non equilibrium mirror symmetric part. To be brief,
we mention only the correlation propagator for the field
φ and refer the reader to [10] for the other response and
correlation propagators. In Fourier space the correlation
propagator is

Cφ(q, t− t′) = 〈φ(q, t)φ(−q, t′)〉

= [e−λ(τ+q2)|t−t′| − e−λ(τ+q2)(t+t′)]/(τ + q2). (8)

This propagator corresponds to the Dirichlet initial con-
dition.

The static version is equivalent to the static limit of
model A with φ4 coupling ũ = g − 3γ2. We briefly recall,
from the renormalization group analysis of the dynamics
of model C [9], the results useful for the present work. The
dimensionless coupling constants u and v are defined as
Kdũ = µεu and Kdγ

2 = µεv, where µ is an arbitrary mo-
mentum scale and ε = 4− d and K−1

d = 2d−1πd/2Γ (d/2).
Broadly there are two distinct regimes in the (n, d) plane
depending upon the sign of the specific heat exponent α.
For α < 0 the stable fixed points are u∗ = 6ε/(n + 8)
and v∗ = 0. Clearly in this regime large scale properties
of model C are same as model A and the dynamic expo-
nent ζ = 2 + O(ε2). For α > 0 there is a stable nonzero
fixed point v∗ = 2ε(4 − n)/[n(n + 8)].These two regimes
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can further be separated depending on the fixed point of
ρ. For the details on these aspects we refer the reader to
[9]. For one component order parameter ρ∗ = 1+O(ε) and
the conventional scaling ζ = 2 + α/ν holds good.

In an attempt to understand the short time exponent
for model C in a semi-infinite geometry using a scaling
argument based on a SDE, we write the scaling form for
the magnetization

m(z, t,m0) ∼ t−β/νζF(z/t1/ζ,m0t
x0/ζ). (9)

Since the conserved density profile has a nontrivial be-
havior solely due to the coupling with the order parame-
ter field, we have ignored the explicit dependence of the
scaling function on the conserved field. Our approach of
solving one loop renormalized equation of motion pro-
vides a more rigorous justification for this. Furthermore
because of the scaling of the magnetization close to the
surface as m ∼ t−β1/νζ , where β1 is the surface magne-
tization exponent [4], we expect F(x, y) ∼ xaF1(y) such
that a = (β1− β)/ν. This implies that near the boundary

m(z, t,m0) = z(β1−β)/νt−β1/νζF1(m0t
x0/ζ). (10)

This result can also be understood by SDE which should
hold good for fields with different scaling dimensions
on or off the surface. Since at short time m should be
proportional to m0, the short time behavior close to the
surface is

m(z, t) ∼ m0z
(β1−β)/νtθc+(β−β1)/νζ . (11)

Equation (11) shows that the early time behavior close to
the surface is described by the exponent θc1 which satisfies
the scaling relation

θc1 = θc + (β − β1)/νζ, (12)

involving the bulk short time exponent and static expo-
nents.

The above scaling relation is supported by an explicit
calculation starting from the linearized equations for the
order parameter and the conserved density. This approach
is elaborated in Section 2. Singularities appearing at the
one loop level are taken care of by the renormalization of
appropriate parameters. Solving the renormalized equa-
tions, the short time exponents are then obtained. The
details in Section 2 is important to appreciate the crucial
role played by the conserved density. The justification of
the scaling argument and the agreement between the two
approaches are discussed in Section 3.

2 One loop renormalized equations

Starting from initial conditions and the translational in-
variance in d − 1 directions, the one loop equations for
time variations of the averaged conserved density E(z, t) =
〈E(x, t)〉 and order parameter m(z, t) = 〈φ(x, t)〉 can be
written as

1

λρ
∂tE = ∂2

zE(z, t) +
γ

2
∂2
z 〈φ

2(x, t)〉 (13)

1

λ
∂tm(z, t) + [τ0m−∇

2m+
u0(n+ 2)

6
C(z, t)m

+ γ0〈E(z, t)φ(z, t)〉] = 0. (14)

The one loop term introduces spatial variation in the con-
served density profile which is flat otherwise. The one loop
contribution C(z, t) = 〈φ2(x, t)〉 consists of bulk and sur-
face parts as C(z, t) = Cb(0, t)± Cb(2z, t) [17], where

Cb(z, t)=
1

(2π)d

∫
ddq

τ0 + q2
[1−e−2λ(q2+τ)t] exp[ikz] (15)

and ± refer to special and ordinary transitions respec-
tively. The first term on the RHS of (15) in the bulk contri-
bution Cb(0, t) has a divergence which has to be absorbed
by the renormalization of the temperature. Evaluating the
integrals we obtain

C(z, t) =
1

32π2

[
−

1

t̃
±

2

z2
exp(−z2/2t̃)

]
, (16)

where t̃ = λt. Substituting this in (13), we find that the
solution of the conserved density profile is of the form
E(z, t) = (1/t)F (z2/t), where t = λρt. Very close to the
boundary such that z � t1/2, F (x) ∼ ∓γ/(32π2x), where
− refers to the special transition. Therefore very close to
the boundary we have

E(z, t) ∼ ∓γ/32π2z2, (17)

for special and ordinary transition respectively. Equa-
tion (17) shows the importance of the one loop term from
φ (the inhomogeneous term in (13)) in the behavior of
〈E〉 near the surface. Since the above result is restricted
to the regime z � t1/2, initial condition cannot be reached
from this. At the fixed point of our interest this power law
form associated with a prefactor O(ε1/2) contributes at
O(ε) in the equation for the order parameter. Though a
further analysis about the shape of the conserved density
profile away from the surface deserves attention [18], we
here restrict ourselves very close to the surface.

Next we consider the term A(x, t) = 〈E(x, t)φ(x, t)〉
which needs to be expanded in order to take into account
the other O(ε) terms in (14). Using the generating func-
tional in (7), we have

A(x, t) = 〈E(x, t)φ(x, t)〉 − λγ

×

∫
ddx1

∫ t

0

dt1{〈E(x, t)E(x1, t1)〉〈φ(x, t)φ̃(x1, t1)〉〈φ(x1, t1)〉

− ρ〈E(x, t)∇2Ẽ(x1, t1)〉〈φ(x, t)φ(x1 , t1)〉〈φ(x1, t1)〉}.
(18)

For convenience we denote the two terms in the curly
bracket by A1(x, t) and A2(x, t) respectively. It is appar-
ent that there is no straight forward way to evaluate the
last two terms due to their coupled structure. To obtain
the contributions of these term in the bulk case, we as-
sume 〈φ(x1, t1)〉 to be space time independent. This is
also justified if, say, the time dependence has an univer-
sal exponent ∼ tp where p ∼ O(ε). In that case from
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the expansion 〈φ(x1, t1)〉 ∼ 1 + ε ln t it is clear that upto
this order of calculation only the time independent piece is
the important one. Now the contributions from the above
terms in the bulk case are

A1(x, t) = −
sd

(2π)d
γ

t̃

[
1

2(1 + ρ)2
+

1

4ρ(1 + ρ)

]
,

A2(x, t) = −
sd

(2π)d
γ

t̃

[
ρ

4(1 + ρ)
+

ρ

2(1 + ρ)2

]
, (19)

where sd = 2πd/2/Γ (d/2). These two terms correspond
to second and third diagrams in Figure 1 of [10]. Corre-
spondingly the second terms in the square brackets can be
compared with O(1) parts in the fourth and third terms
in equation (32) of [10]. These are the contributions from
the “initial” part of the correlators.

In the semi-infinite case we have

A1(z, t) = ±
sdγ

(2π)d

[
2ρ exp[−z2/(1 + ρ)t̃]

2z2(ρ2 − 1)

+
exp[−z2/2ρt̃]

2z2(1− ρ)

]

A2(z, t) = ±
sdργ

(2π)d

[
2 exp[−z2/(1 + ρ)t̃]

2z2(1− ρ2)
−

exp[−z2/2t̃]

2z2(1− ρ)

]
·

Adding all the bulk and surface contributions from above
we have

1

λ
∂tm− ∂

2
zm+

u

(64π2)

[
−

1

t̃
±

2

z2

]
m+

γ2

16π2t̃
m

∓
3γ2

32π2

m

z2
= 0. (20)

Note that for γ = 0, we get back the equation for model
A. This equation can be solved by assuming a scaling form
m(z, t) = U(t̃)V (z/t1/ζ). Here we are restricted to ζ = 2.
In the bulk limit z → ∞ we obtain U(t̃) ∼ t̃θc , where
θc = O(ε2). This agrees with the bulk short time exponent
in [10]. For z � t1/2, we find V (z/t1/2) ∼ (z/t1/2)1−ε/6 for
the ordinary transition and V (z/t1/2) ∼ (z/t1/2)−ε/6 for
the special transition. Thus for magnetization upto O(ε),
we have

m(z, t) ∼ m0z
1−ε/6t̃−1/2+ε/12

for ordinary transition (21)

∼ m0z
−ε/6tε/12

for special transition. (22)

3 Conformity with scaling analysis

A few points in the above perturbative calculation and
in the previous scaling analysis need to be re-emphasized
here. From the nature of the one loop equation for the

conserved density and its solution, it is clear that we are
in a time regime where the conserved density profile is
controlled by the φ correlations. As a consequence, the
inhomogeneous equation (13) provides a spatially depen-
dent one loop correction to the conserved density profile E
with a prefactor of O(ε1/2). The conserved field is, there-
fore, redundant in the scaling function which involves only
scaled variables with ε dependence in various exponents.

We see that the short time exponents in (21, 22), ob-
tained by solving the differential equations, are in agree-
ment with the prediction from scaling analysis upto the
factor ζ (recall that for bulk model C, θc = O(ε2) [10] and
the static exponents β and β1 are same as obtained from
the static limit of model A). Clearly while solving one loop
equations, we are restricted to ζ = 2 because of the very
nature of the equation. The fact that ζ = 2 + ε/3 should
appear from the appropriate propagator renormalization
which has not been performed in this simple approach.
Since the static exponent of z, obtained from the scaling
analysis, is in clear agreement with the calculation, we
use ζ = 2 + ε/3 in V (z/t1/ζ) ∼ (z/t1/ζ)−ε/6, (z/t1/ζ)1−ε/6

for special and ordinary transitions respectively. Thus we
conclude that the short time exponents in the semi-infinite
model C are

θc1 = ε/6ζ for special transition (23)

= −(1− ε/6)/ζ for ordinary transition. (24)

The characteristics of model C is reflected in the expo-
nent of time, whereas the exponent of z remains same as
model A. This is due to the fact that the static limits of
model C and model A are same. We do not discuss more
about the behavior of the autocorrelation function. The
short distance, short time behavior of this quantity for
model A has been explained in [5]. Our analysis shows
that the same scaling relation is valid here.

4 Conclusion

We have obtained the nature of the conserved density pro-
file close to the surface by solving a one loop differential
equation. This one loop correction to the flat profile is of
O(ε1/2). This form of the profile has significant impact on
the relaxation of the order parameter in the semi-infinite
geometry. The universal short time exponent θc1 in a semi-
infinite geometry is given in (23, 24). As in model A the
short time exponents for special and ordinary transitions
differ drastically and they are consistent with the scaling
analysis based on short distance expansion.
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